Type: \(\displaystyle A^{2}_1+A^{1}_1\) (Dynkin type computed to be: \(\displaystyle A^{2}_1+A^{1}_1\))
Simple basis: 2 vectors: (1, 2, 3, 2), (1, 2, 2, 0)
Simple basis epsilon form:
Simple basis epsilon form with respect to k:
Number of outer autos with trivial action on orthogonal complement and extending to autos of ambient algebra: 0
Number of outer autos with trivial action on orthogonal complement: 0.
C(k_{ss})_{ss}: A^{1}_1
simple basis centralizer: 1 vectors: (1, 0, 0, 0)
Number of k-submodules of g: 20
Module decomposition, fundamental coords over k: \(\displaystyle 2V_{2\omega_{1}+\omega_{2}}+V_{2\omega_{2}}+2V_{\omega_{1}+\omega_{2}}+3V_{2\omega_{1}}+4V_{\omega_{2}}+4V_{\omega_{1}}+4V_{0}\)
g/k k-submodules
idsizeb\cap k-lowest weightb\cap k-highest weightModule basisWeights epsilon coords
Module 11(-1, 0, 0, 0)(-1, 0, 0, 0)g_{-1}-\varepsilon_{1}+\varepsilon_{2}
Module 21(1, 0, 0, 0)(1, 0, 0, 0)g_{1}\varepsilon_{1}-\varepsilon_{2}
Module 32(-1, -1, -2, 0)(0, 1, 0, 0)g_{2}
g_{-11}
\varepsilon_{2}-\varepsilon_{3}
-\varepsilon_{1}-\varepsilon_{3}
Module 42(0, -1, -2, 0)(1, 1, 0, 0)g_{5}
g_{-9}
\varepsilon_{1}-\varepsilon_{3}
-\varepsilon_{2}-\varepsilon_{3}
Module 52(-1, -1, 0, 0)(0, 1, 2, 0)g_{9}
g_{-5}
\varepsilon_{2}+\varepsilon_{3}
-\varepsilon_{1}+\varepsilon_{3}
Module 62(-1, -1, -2, -1)(0, 1, 1, 1)g_{10}
g_{-15}
-1/2\varepsilon_{1}+1/2\varepsilon_{2}-1/2\varepsilon_{3}-1/2\varepsilon_{4}
-1/2\varepsilon_{1}+1/2\varepsilon_{2}-1/2\varepsilon_{3}+1/2\varepsilon_{4}
Module 72(0, -1, 0, 0)(1, 1, 2, 0)g_{11}
g_{-2}
\varepsilon_{1}+\varepsilon_{3}
-\varepsilon_{2}+\varepsilon_{3}
Module 82(0, -1, -2, -1)(1, 1, 1, 1)g_{12}
g_{-13}
1/2\varepsilon_{1}-1/2\varepsilon_{2}-1/2\varepsilon_{3}-1/2\varepsilon_{4}
1/2\varepsilon_{1}-1/2\varepsilon_{2}-1/2\varepsilon_{3}+1/2\varepsilon_{4}
Module 92(-1, -1, -1, -1)(0, 1, 2, 1)g_{13}
g_{-12}
-1/2\varepsilon_{1}+1/2\varepsilon_{2}+1/2\varepsilon_{3}-1/2\varepsilon_{4}
-1/2\varepsilon_{1}+1/2\varepsilon_{2}+1/2\varepsilon_{3}+1/2\varepsilon_{4}
Module 103(-1, -2, -2, 0)(1, 2, 2, 0)g_{14}
2h_{3}+2h_{2}+h_{1}
g_{-14}
\varepsilon_{1}+\varepsilon_{2}
0
-\varepsilon_{1}-\varepsilon_{2}
Module 112(0, -1, -1, -1)(1, 1, 2, 1)g_{15}
g_{-10}
1/2\varepsilon_{1}-1/2\varepsilon_{2}+1/2\varepsilon_{3}-1/2\varepsilon_{4}
1/2\varepsilon_{1}-1/2\varepsilon_{2}+1/2\varepsilon_{3}+1/2\varepsilon_{4}
Module 124(-1, -2, -3, -1)(1, 2, 2, 1)g_{17}
g_{-7}
g_{4}
g_{-19}
1/2\varepsilon_{1}+1/2\varepsilon_{2}-1/2\varepsilon_{3}-1/2\varepsilon_{4}
1/2\varepsilon_{1}+1/2\varepsilon_{2}-1/2\varepsilon_{3}+1/2\varepsilon_{4}
-1/2\varepsilon_{1}-1/2\varepsilon_{2}-1/2\varepsilon_{3}-1/2\varepsilon_{4}
-1/2\varepsilon_{1}-1/2\varepsilon_{2}-1/2\varepsilon_{3}+1/2\varepsilon_{4}
Module 134(-1, -2, -2, -1)(1, 2, 3, 1)g_{19}
g_{-4}
g_{7}
g_{-17}
1/2\varepsilon_{1}+1/2\varepsilon_{2}+1/2\varepsilon_{3}-1/2\varepsilon_{4}
1/2\varepsilon_{1}+1/2\varepsilon_{2}+1/2\varepsilon_{3}+1/2\varepsilon_{4}
-1/2\varepsilon_{1}-1/2\varepsilon_{2}+1/2\varepsilon_{3}-1/2\varepsilon_{4}
-1/2\varepsilon_{1}-1/2\varepsilon_{2}+1/2\varepsilon_{3}+1/2\varepsilon_{4}
Module 143(-1, -2, -4, -2)(1, 2, 2, 2)g_{20}
g_{-3}
g_{-22}
-\varepsilon_{3}-\varepsilon_{4}
-\varepsilon_{3}
-\varepsilon_{3}+\varepsilon_{4}
Module 153(-1, -2, -3, -2)(1, 2, 3, 2)g_{21}
2h_{4}+3h_{3}+2h_{2}+h_{1}
g_{-21}
-\varepsilon_{4}
0
\varepsilon_{4}
Module 163(-1, -2, -2, -2)(1, 2, 4, 2)g_{22}
g_{3}
g_{-20}
\varepsilon_{3}-\varepsilon_{4}
\varepsilon_{3}
\varepsilon_{3}+\varepsilon_{4}
Module 176(-2, -3, -4, -2)(1, 3, 4, 2)g_{23}
g_{6}
g_{16}
g_{-18}
g_{-8}
g_{-24}
\varepsilon_{2}-\varepsilon_{4}
\varepsilon_{2}
-\varepsilon_{1}-\varepsilon_{4}
\varepsilon_{2}+\varepsilon_{4}
-\varepsilon_{1}
-\varepsilon_{1}+\varepsilon_{4}
Module 186(-1, -3, -4, -2)(2, 3, 4, 2)g_{24}
g_{8}
g_{18}
g_{-16}
g_{-6}
g_{-23}
\varepsilon_{1}-\varepsilon_{4}
\varepsilon_{1}
-\varepsilon_{2}-\varepsilon_{4}
\varepsilon_{1}+\varepsilon_{4}
-\varepsilon_{2}
-\varepsilon_{2}+\varepsilon_{4}
Module 191(0, 0, 0, 0)(0, 0, 0, 0)h_{1}0
Module 201(0, 0, 0, 0)(0, 0, 0, 0)h_{3}0

Information about the subalgebra generation algorithm.
Heirs rejected due to having symmetric Cartan type outside of list dictated by parabolic heirs: 16
Heirs rejected due to not being maximally dominant: 1
Heirs rejected due to not being maximal with respect to small Dynkin diagram automorphism that extends to ambient automorphism: 1
Heirs rejected due to having ambient Lie algebra decomposition iso to an already found subalgebra: 0
Parabolically induced by A^{2}_1
Potential Dynkin type extensions: A^{2}_1+2A^{1}_1,